Higher dimensional Scherk’s hypersurfaces

نویسنده

  • Frank Pacard
چکیده

In 3-dimensional Euclidean space Scherk second surfaces are singly periodic embedded minimal surfaces with 4 planar ends. In this paper, we obtain a natural generalization of Scherk’s second surfaces in higher dimensional Euclidean spaces. In particular we show that, in higher dimensional Euclidean spaces R, for n ≥ 3, there exists n−1-periodic embedded minimal hypersurfaces with 4 hyperplanar ends. The moduli space of these hypersurfaces forms 1-dimensional fibration over the moduli space of flat tori in R. A partial description of the boundary of this moduli space is given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Order Invariants of Levi Degenerate Hypersurfaces

The first part of this paper considers higher order CR invariants of three dimensional hypersurfaces of finite type. Using a full normal form we give a complete characterization of hypersurfaces with trivial local automorphism group, and analogous results for finite groups. The second part considers hypersurfaces of finite Catlin multitype, and the Kohn-Nirenberg phenomenon in higher dimensions...

متن کامل

Riemann minimal surfaces in higher dimensions

We prove the existence of a one parameter family of minimal embedded hypersurfaces in R, for n ≥ 3, which generalize the well known 2 dimensional ”Riemann minimal surfaces”. The hypersurfaces we obtain are complete, embedded, simply periodic hypersurfaces which have infinitely many parallel hyperplanar ends. By opposition with the 2-dimensional case, they are not foliated by spheres. Résumé. No...

متن کامل

Intersecting hypersurfaces and Lovelock Gravity

A theory of gravity in higher dimensions is considered. The usual Einstein-Hilbert action is supplemented with Lovelock terms, of higher order in the curvature tensor. These terms are important for the low energy action of string theories. The intersection of hypersurfaces is studied in the Lovelock theory. The study is restricted to hypersurfaces of co-dimension 1, (d− 1)-dimensional submanifo...

متن کامل

Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

On the Isoptic Hypersurfaces in the n-Dimensional Euclidean Space

The theory of the isoptic curves is widely studied in the Euclidean plane E2 (see [1] and [13] and the references given there). The analogous question was investigated by the authors in the hyperbolic H2 and elliptic E2 planes (see [3], [4]), but in the higher dimensional spaces there is no result according to this topic. In this paper we give a natural extension of the notion of the isoptic cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008